

UNIVERSITY OF SASKATCHEWAN College of Agriculture and Bioresources

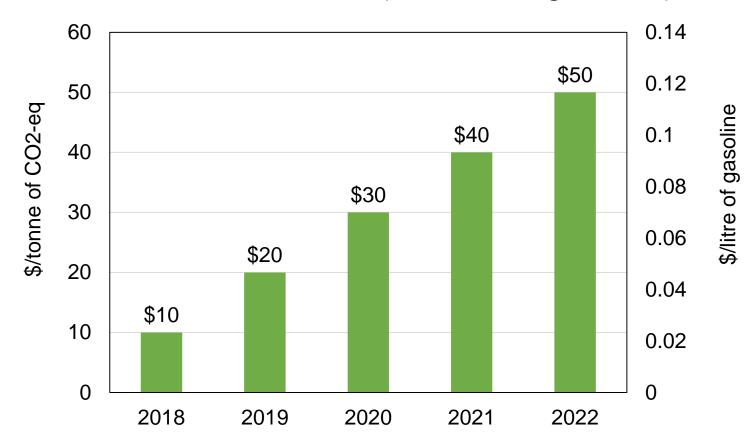
DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS AGBIO.USASK.CA

CARBON TAX DESCRIPTION AND IMPLICATIONS

DR. TRISTAN D. SKOLRUD DEPT. OF AGRICULTURAL AND RESOURCE ECONOMICS UNIVERSITY OF SASKATCHEWAN

Federal Carbon Policy

• Beginning in 2018, Canada will implement a *minimum* carbon price of


\$10 per tonne of CO₂-equivalent (CO₂-eq)

In terms of gasoline, this is equivalent to a tax of approximately

\$0.02 per litre

Federal Carbon Tax (in \$/litre of gasoline)

Federal Carbon Policy

DETAILS

- Provinces choose between cap-and-trade or a carbon tax
- Tax revenues remain in the *province of origin*
 - Revenue-neutral tax scheme
- Provinces have the final say on tax revenue distribution
- Goal: Reduce emissions to 30% below 2005 levels by 2030

Policy Uncertainty

• Will agriculture be exempt from the carbon tax? If so, which inputs?

From the Pan-Canadian Approach to Pricing Carbon Pollution news.gc.ca/web/article-en.do?nid=1132169

"Common scope: Pricing will be based on GHG emissions and applied to a common and broad set of sources to ensure effectiveness and minimize interprovincial competitiveness impacts. *At a minimum, carbon pricing should apply to substantively the same sources as British Columbia's carbon tax.*"

Policy Uncertainty

- BC included agriculture in 2008, but exempted the sector from carbon fuel taxes in 2014
 - Gas and diesel only

• Even with a fuel tax exemption, several inputs will see indirect price increases from the carbon tax

Fertilizer Cost Impact (per acre) assuming various cost pass-through

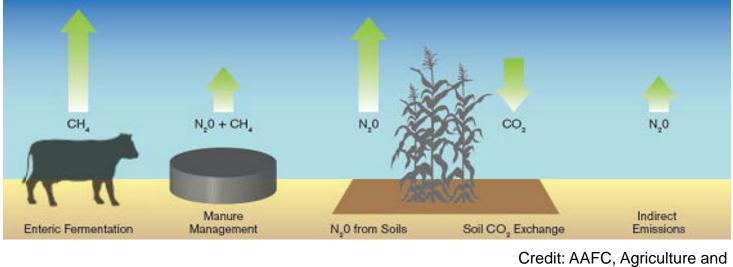
Carbon Tax (\$/tonne of CO2-eq)

Pass through	\$10.00	\$30.00	\$50.00
0	\$0.00	\$0.00	\$0.00
0.25	\$0.47	\$1.41	\$2.35
0.5	\$0.93	\$2.81	\$4.69
0.75	\$1.40	\$4.22	\$7.04
1	\$1.87	\$5.63	\$9.39

Source: P. Slade 2017

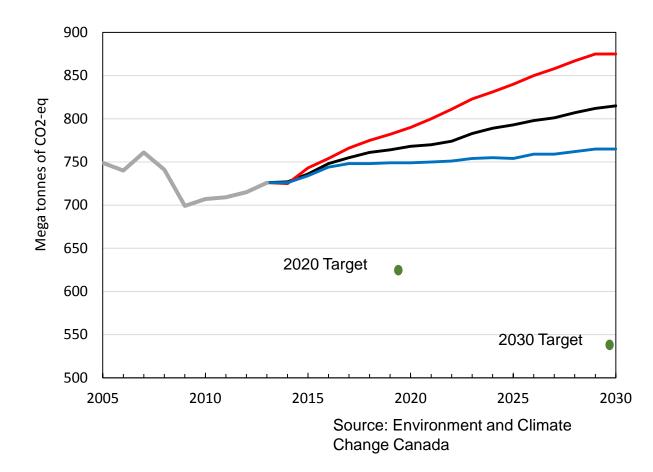
Policy Uncertainty

Possible exemptions for "trade-exposed" sectors:


"Carbon pricing policies should minimize competitiveness impacts and carbon leakage, particularly for trade-exposed sectors"

—Pan-Canadian Approach to Pricing Carbon Pollution

- Will the tax (eventually) be applied to non-fuel GHG emission sources?
- Primary concern for both livestock and crop farmers
- Carbon dioxide emitted from transportation pales in comparison to the CO₂-eq from other sources



Climate: Greenhouse Gases

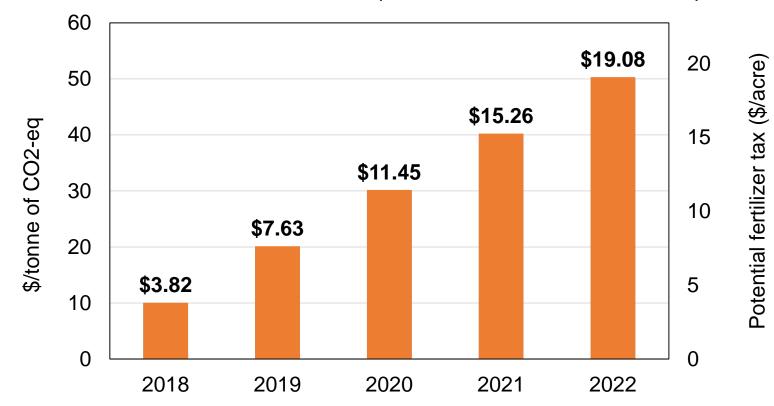
- Agricultural emissions account for 8-10% of total emissions in Canada
- Only a small fraction is due to emissions from fuel

Taxes imposed on non-fuel GHG emissions may be unlikely at first, but consider the Canadian goal for 2030:

VERSITY OF

Potential vulnerability for crop farmers?

Fertilizer


Fertilizer

- One of the primary sources of N₂O emissions from agriculture
- N₂O has a CO₂-eq of approximately **300**
- Assuming:
 - 2% of applied nitrogen emitted as N₂O
 - Application rates of 100kg of N/hectare (89 lbs/acre)
 - What would a fertilizer tax look like?

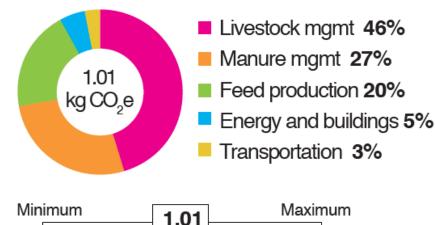
Assumption source: Dr. Mario Tenuta, Dept. of Soil Science, University of Manitoba

Federal Carbon Tax (in fertilizer cost \$/acre)

Source: Grainews, Dr. Mario Tenuta (2017)

Potential vulnerability for livestock farmers?

Enteric Fermentation and Manure Management

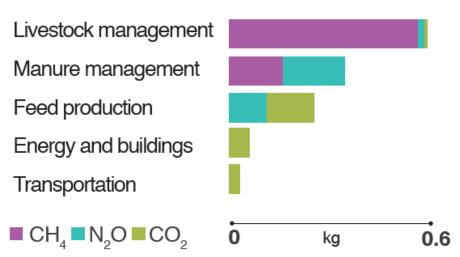


0.94

The environmental profile of a kilogram (0.97 litre) of milk

Carbon footprint

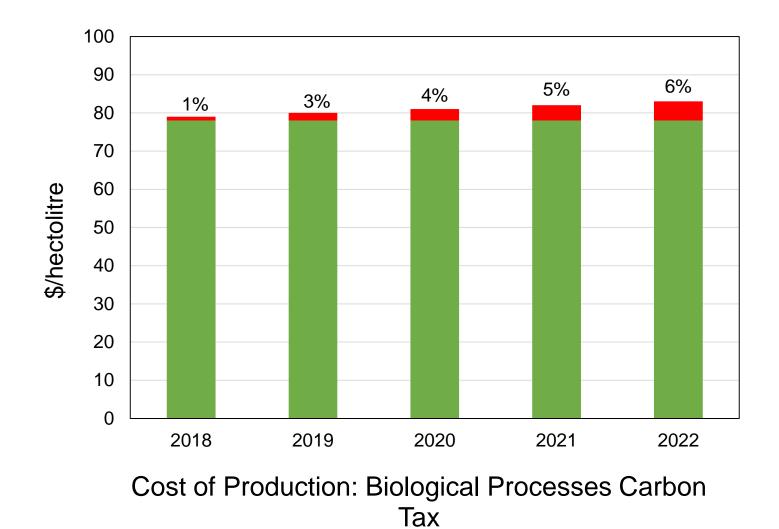
Contribution of each life cycle stage



1.10

Weighted average

kg CO_se


Breakdown of GHG emissions

Credit: Socioeconomic and Environmental Life Cycle Assessment (LCA) of Canadian Milk Production, commissioned by the Dairy Farmers of Canada

Sources: CDC 2015 Cost of Production, Dairy Farmers of Canada LCA

Short-term Impacts

- Moderate input price increases
- Feed, energy, and fertilizer-inefficient farmers will see comparatively lower margins
- Capital assets for improving feed and energy efficiency may now be cost-effective
- Need for carbon accounting at the farm level opportunities for emissions savings?

- Current policy suggests a focus on *inputs* rather than *emissions*
 - Measurement problem
 - First-best solution likely unattainable
 - Which second-best solution is *preferable*?
 - Spatially uniform emission factors
 - Regulation of a single GHG
 - Control of a single agricultural input
 - Control of input combinations
 - Management practices?

Management practices

When only input choice is incentivized, BMP adoption *not* involving controlled inputs will be limited

As currently written*, the carbon tax policy falls into this category, and will not encourage non-input based BMP adoption, despite the potential for decreased GHG emissions

- Potential evaluation criteria
 - Efficiency (deadweight loss, administrative)
 - Changes in yield/output
 - Changes in net income
 - Changes in GHG emissions
 - AAFC HOLOS model

A final note on **revenue-neutrality**

The method through which revenues are returned will have dramatic consequences on both social welfare and pollution (GHG) reduction (Skolrud and Galinato 2017, Skolrud et al. 2016)

- Lump sum rebate?
- Clean-technology investment?
- Clean-input subsidization?

Thank you for your time

Questions?

Tristan Skolrud tristan.skolrud@usask.ca 306-966-4537